EFFECT OF THERMAL INSTABILITY ON THE RATE
OF CONVECTIVE HEAT TRANSFER

G. I. Pavlovskii and V. V. Solovei UDC 536.242

Results are shown of an experimental study concerning the transient convective heat transfer
in the housing clearance in a turbine model.

Relations which have been derived for the transient heat transfer show that the process rate in this
case is affected not only by such parameters as the Reynolds number, the Prandtl number, and the hydrau-
lic diameter (which characterize the steady-state heat transfer) but also by the thermophysical properties
of the material, by its thickness, and its initial temperature, i.e., by factors which determine the transient
heat conduction.

The authors have studied the effects of transient heat conduction through the flanges of a horizontal
coupling, in a model of a turbine housing, on the rate of convective heat transfer in the housing clearance
of the high-pressure cylinder.

The boundary conditions in an analysis of transient thermal processes are unknown. A direct mea-
surements of thermal fluxes is in this case rather difficult, but it is much simpler here to measure the
temperature at some point on the surface in the gas stream and, thus, to reduce the problem to that of de-
termining the thermal flux produced by such a mode of heating. It is necessary, therefore, to solve the
temperature problem in reverse, namely to determine the boundary conditions from the known temperature
at some point of the body whose shape, thermophysical characteristics, and initial temperature distribution
are all given. In our case these basic data had been obtained on the model of a K-300 turbine housing one
fifth the original size.

The preliminary measurements included the temperature of the ambient heating medium and the tem-
perature of the model, as a function of time, at various points across the thickness of the housing compo-
nents.

In order to evaluate the test data by the most appropriate method, we first examined the temperature
field of the flange coupling within the test zone of the high-pressure cylinder. An analysis revealed that
the one-dimensional temperature field of the flange coupling was almost identical to the temperature field
of some equivalent plate with a thickness Ry greater than the nominal flange thickness R. This conclusion
agreed with the results in [1], where flange couplings of turbines had also been studied.

These results, then, justify solving the reverse problem of heat conduction as a one-dimensional
problem. In view of this, we will first consider the heating of an infinitely large plate with boundary con-
ditions of the first kind. The measured temperature characteristics of the metallic flange surface may
serve as the boundary functions. According to the test data, the temperature~time characteristics of heat
transfer surfaces in the turbine housing may, for a definite initial period of time, be approximated by the
equation

t(Ry 1) = Iy — (b — fo) €xp (—kT). (1)
The temperature of the unheated flange side follows the characteristic of an adiabatic insulated surface.

If one considers the problem, i.e., assumes the thermophysical properties to be constant over the
test range of temperatures, then the mathematical problem can be formulated as follows:
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The solution to the problem stated in [2] yields the thermal flux density at the heat transfer surface
exp (—PdFo)y/ Pd

ot ‘ l{ y
= =M ln—t) Rcosy Pd

Ox

sin V' Pd

g=—>

x=R

= 2
-+ 2 Anpy, exp ( —ynFO) sin un]} . (3)
w)

i g
From the values of thermal flux found by the solution of Eq. (3) and from the ambient temperatures at the
surface, one then determines the heat transfer coefficients according to the Newton—Richman equation.

The temperature of the flange surface, the temperature of the vapor, and the heat transfer coefficient
at the characteristic section of the high-pressure cylinder are shown in Fig. 1 as functions of time, The
points on the curves represent the measured values of the temperature on both flange sides under a con-
stant rate of vapor flow, The solid line, which represents the temperature variation at the heated surface,
has been plotted according to Eq. (1). The temperature curve for the insulated surface is based on the so-
lution to the equation of heat conduction for a plate with boundary conditions of the first kind (1). The dis-
crepancy between calculated and measured temperatures does not exceed here 0.5%.

According to Fig. 1, the heat transfer coefficient is a function of time. Its maximum value occurs
at the start of the heating process. It then decreases with time down to a constant level. The time to
reach a quasisteady mode of heat transfer is 200-350 sec, which corresponds to a Fourier number within
the 0.125-0.220 range. Such a trend is in accord with the basic hypotheses concerning transient heat trans-
fer which have been formulated and then verified experimentally in [3-5].

If one assumes a quasisteady effect of the Reynolds number, of the Prandtl number, and of the hy-
draulic diameter on the heat transfer, then the dimensionless heat transfer coefficient during transient
heating will be a function of the transient number:

NU ¢y  — f /‘g
Nu -
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o — 4 / ° transient heat transfer coeffi~
'8 c— 5 ‘35 cient to its respective quasisteady
’ e value Nugy/Nu, as a function of
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Nug = Nuf(Ky)s )

where Nu = fy(Re, Pr, d) is the Nusselt number for quasisteady heat transfer and Kty = dt.,/dr - d%/ (tf—tJat
is the transient number [6], which characterizes the rate of change of the relative surface temperature.

The tests were performed with vapor flow rates resulting in values of the Reynolds number within the
11,000-130,000 range at the test sections. As the characteristic dimension for the Nusselt number and the
Reynolds number we sclected the gap width between inner and outer cylinder. The operating vapor char-
acteristics were varied during the tests over the following ranges: p = 4.5-7.0 bars and ty = 175-330°C.

When the surface temperature varies exponentially according to Eq. (1), then the Ki, number can be
defined as follows:
k(t, —1,) exp (—kt) &

t;—to)as ®)

K==

The Nutp/Nu = f(Kip) relation has split into different curves corresponding to different tests. With the in-
troduction of a corrective temperature factor, it became possible to narrow the scatter of test points down
to a universal curve shown in Fig. 2 with the abscissas
N t
Ktr'—‘* Ktr_i— :

to
As K{, increases, the difference between the rates of transient and quasisteady heat transfer decreases.
The trend of the relation between the Nusselt number (Nugy/Nu) and the transient number (K¢,) seems to
follow approximately a parabola. Thus, Eq. (4) becomes

Nu tr . *12,3 .

The maximum scatter of test points about the approximating curve is 9%.

In comparing the empirical relation (6) for the rate of transicnt heat transfer with the theoretical
analysis of transient heat transfer in [4], it must be noted that qualitatively similar results have been ob-
tained by the two different approaches to the problem.

With the established dependence of the heat transfer rate on the transient number, it is possible now
to define the boundaries between the quasisteady and the transient regions. It follows from Fig. 2 that the
transient effect becomes significant when K{§. < 1.7. In this case the process can be described by the equa-
tions of steady-state heat transfer with instantaneous values of the parameters.

The results of the experimental study show that transient and quasi-steady convective heat transfer
differ significantly and that this difference widens as the rate of change of temperature at the heated sur-
face increases. »

The transient effect on the heat transfer rate within the test range of parameter variations is accu-
rately enough accounted for by the first time derivative of the temperature. ’

NOTATION

tg is the initial temperature of component, °C;

ty is the temperature of the heated surface, °C;

tyy  is the maximum temperature of heated surface, °C;

te is the temperature of ambient heating medium, °C;

T is the time;

Ry  is the thickness of equivalent plate;

d is the hydraulic diameter;

q is the thermal flux density, W/m?;

« is the heat transfer coefficient, W/m?.°C;

a is the thermal diffusivity, m%/h;

A is the thermal conductivity, W/m - °C;

P is the pressure of ambient heating medium, bars;
wd ad

arv
Fo=—53 Re=——; Nu=3— .
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